skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Giustino, Feliciano"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available July 1, 2026
  2. Free, publicly-accessible full text available November 19, 2025
  3. Titanium dioxide (TiO2) is a wide-gap semiconductor with numerous applications in photocatalysis, photovoltaics, and neuromorphic computing. The unique functional properties of this material critically depend on its ability to transport charge in the form of polarons, namely narrow electron wavepackets accompanied by local distortions of the crystal lattice. It is currently well established that the most important polymorphs of TiO2, the rutile and anatase phases, harbor small electron polarons and small hole polarons, respectively. However, whether additional polaronic species exist in TiO2, and under which conditions, remain open questions. Here, we provide definitive answers to these questions by exploring the rich landscape of polaron quasiparticles in TiO2via recently developed ab initio techniques. In addition to the already known small polarons, we identify three species, namely a large hole polaron in rutile, a large quasi-two-dimensional electron polaron in anatase, and a large exciton polaron in anatase. These findings complete the puzzle on the polaron physics of TiO2and pave the way for systematically probing and manipulating polarons in a broad class of complex oxides and quantum materials. 
    more » « less
  4. Abstract Anharmonicity and local disorder (polymorphism) are ubiquitous in perovskite physics, inducing various phenomena observed in scattering and spectroscopy experiments. Several of these phenomena still lack interpretation from first principles since, hitherto, no approach is available to account for anharmonicity and disorder in electron–phonon couplings. Here, relying on the special displacement method, we develop a unified treatment of both and demonstrate that electron–phonon coupling is strongly influenced when we employ polymorphous perovskite networks. We uncover that polymorphism in halide perovskites leads to vibrational dynamics far from the ideal noninteracting phonon picture and drives the gradual change in their band gap around phase transition temperatures. We also clarify that combined band gap corrections arising from disorder, spin-orbit coupling, exchange–correlation functionals of high accuracy, and electron–phonon coupling are all essential. Our findings agree with experiments, suggesting that polymorphism is the key to address pending questions on perovskites’ technological applications. 
    more » « less